35 research outputs found

    Co-Channel Interference Cancellation in OFDM Networks using Coordinated Symbol Repetition and Soft Decision MLE CCI Canceler

    Full text link
    In this paper, a new scheme of downlink co-channel interference (CCI) cancellation in OFDM cellular networks is introduced for users at the cell-edge. Coordinated symbol transmission between base stations (BS) is operated where the same symbol is transmitted from different BS on different sub-carriers. At the mobile station (MS) receiver, we introduce a soft decision maximum likelihood CCI canceler and a modified maximum ratio combining (M-MRC) to obtain an estimate of the transmitted symbols. Weights used in the combining method are derived from the channels coefficients between the cooperated BS and the MS. Simulations show that the proposed scheme works well under frequency-selective channels and frequency non-selective channels. A gain of 9 dB and 6 dB in SIR is obtained under multipath fading and flat-fading channels, respectively.Comment: 4 pages, 8 figures, IEEE International Conference on Signal Processing and Communications, 2007. ICSPC 200

    Parallel QRD-M encoder for multi-user MIMO systems

    No full text
    International audienceIn the context of multi-user precoding, the idea behind vector perturbation (VP) lies in adding an integer vector to the data vector such that the overall transmit power is reduced, where the performance at the users end is consequently improved. In the literature, several techniques have been proposed to nd a quasi-optimum perturbing vector, where this process was represented as an integer lattice search problem. In this paper, we propose a parallel QRD-M encoder (PQRDME) that, besides attaining a quasi-optimum diversity order, leads to tremendous reduction in the latency of the vector perturbation stage. Based on the set grouping, the proposed encoder transforms the full tree-search of the conventional QRDME into partial trees that can be pipelined to increase the encoding throughput. We evaluate the proposed algorithm under several scenarios with both perfect channel state information (PCSI) and imperfect CSI (ICSI) at the transmitter side, where simulation results show robust performance when compared to the optimum encoder

    Complex Quadrature Spatial Modulation

    Full text link
    In this paper, we propose a spatial modulation (SM) scheme referred to as complex quadrature spatial modulation (CQSM). In contrast to quadrature spatial modulation (QSM), CQSM transmits two complex signal constellation symbols on the real and quadrature spatial dimensions at each channel use, increasing the spectral efficiency. To this end, signal symbols transmitted at any given time instant are drawn from two different modulation sets. The first modulation set is any of the conventional QAM/PSK alphabets, while the second is a rotated version of it. The optimal rotation angle is obtained through simulations for several modulation schemes and analytically proven for the case of QPSK, where both results coincide. Simulation results showed that CQSM outperformed QSM and generalized SM (GSM) by approximately 5 and 4.5 dB, respectively, for the same transmission rate. Its performance was similar to that of QSM; however, it achieved higher transmission rates. It was additionally shown numerically and analytically that CQSM outperformed QSM for a relatively large number of transmit antennas.Comment: 11 pages, 3 tables, 11 figures. ETRI Journal, 201
    corecore